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P. K. Konakov published a paper in this journal in 1953 in which he arrived
at the following relation between the radiant energy vector and the temperature
gradient in the medium [1]:

(1) q. = -X grad 0

where )r is a proportionality coefficient, the 'radiant heat conduction coeffic-
ient?!. Still earlier, S. N. Shorin used this relation for practical computations
[2,3]. Keeping in mind the importance of knowing the heat transfer in a medium
by means of radiation for modern engineering, let us discuss this as follows.

P. K. Konakov derived (1) on the basis of the application of the second law
of thermodynamics to a non-equilibrium system. However, it is known‘ﬁﬁat thé use
of thermodynamis to describe a non-equilibrium system is not legitimate in all
cases when there is considerable deviation from equilibrium. This fact makes nec-
essary a special investigation of the question of the applicability of (1).

In 1952, Iu. A. Surinov [L] showed in a general way that the gradient repre-
sentation of the radiant energy vector is only a particular case. It appears to
be correct for sufficiently small deviations from the state of thermodynamic
equilibrium.

To be specific, let us analyze the simplest case - steady heat transfer
through a plane layer bounded by absolutely black walls. Using the transport
equation enables the establishment of the following forrula for the magnitude of

the directed transport of radiant energy |5|:

q=// (3T =37) cos 0 dw dv



where
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Here J+ is the absolute value of the radiation intensity in the direction
from the left of the wall to the right; J  correspondingly from right to left;
© is the angle between the ray direction and the x axis (the axis is directed
from the left of the wall, x = O , to the right, x = L , perpendicularly); de
is a solid angle element (integration is over a hemisphere); v 1is the frequency;
e = s(Tl) and e, = s(TQ) are the radiating powers of an absolutely black body
at the temperatures to the left and the right of the wall; n is the index of
refraction of the medium; a is the absorption coefficient.

The first two terms in (2) correspond to the radiation energy of the wall,
attenuated at the expense of its absorption in the medium; the second two describe
the transport of the inherent radiation of the medium. Therefore, instead of a
relation of the type of (1) we have a more complex, integral type relation. Let
us show that the gradient representation (1) is obtained from it in a specific
approximation. First of all, let us turn attention to the fact that the gradient
representation is impossible when the first two terms in (2) exist because these
terms are determined by the boundary conditions and not by the temperature distrib-
ution in the medium (if we digress from the possible dependence of a on the
temperature). These terms will be sufficiently small under the conditions:

(3) aL >>1
and that the process be analyzed sufficiently far from the wall. Here, the expon-
entials in the second terms will be assumed different from zero only near % = x .

This permits the use of a series expansion of en2 around the point x :
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2
(L) en? = (snz)x + (%—-2—5-2)):(2: -x) + ...

Furthermore, for simplicity, let us put « = const . Then, neglecting the
exponentials with large negative exponents, we obtain:

2
+ - 2 cos @ d3(en”)
(5) J =J =- a 3x

from which:
@

For n = const , we obtain

(7) A = lééEZEEEf

r 3a
where J is the Stefan-Boltzmann constant. Therefore, in this case, we really
obtain the gradient relation between the flow of energy and the temperature. We
found (6) before by another method [5] and it has been found to correspond with
the results of investigations by other authors [5,7], S. N. Shorin arrived at the
same type of relation by starting from the representation of the radiant energy as
a photon gas and using the gradient relation (1).

Formula (6), derived here as a particular case, is correct for strongly-
absorbing media but ceases to be true for weakly-agbscorbing media. Actually, it
is sufficient to assume that temperature gradients exist in transparent media at
the expense of the process of molecular heat conduction since q->»o 1is obtained
from (6). An investigation of a relation of type (2) would permit us to establish
that the thermal flow in weakly-absorbing media appears to be linearly dependent
on the magnitude of the absorption coefficient [5]. The results of [6,7] are
found to agree with this. The question of the relation of the thermal radiation
flow to the temperature distribution in the medium is similar, to a great extent,

to the same question for molecular heat conduction. The gradient relation of the
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flow to the temperature distribution (Fourier law) appears to be correct only for
small deviations from system equilibrium, when the free path length is very small
compared with the system dimensions. In the case when they are comparable, the
heat flow is essentially dependent on the character of the process at the walls
and its relation to the temperature distribution is given by an integral relation.

The H - theorem, used to find the shape of the molecule distribution function,
appears to be correct for the case of small deviations from equilibrium, when the
Fourier law is correct. In the general case, this is not so. The result of all
the above is the statement that the gradisnt representation of the radiant energy
vector is competent in the particular case of a strongly-absorbing medium.

Author thanks Prof. A, S. Predvod:_ltelev for supervising this work.
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